This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Synthesis and X-Ray Molecular Structure Analysis of Tricobalt Clusters

 With Multi Ferrocenyl GroupsSatoru Onaka ${ }^{\text {a }}$; Yoshitaka Katsukawa ${ }^{\text {a }}$; Hitoshi Muto ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Environmental Technology, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan

To cite this Article Onaka, Satoru, Katsukawa, Yoshitaka and Muto, Hitoshi(2000) 'Synthesis and X-Ray Molecular Structure Analysis of Tricobalt Clusters With Multi Ferrocenyl Groups', Journal of Coordination Chemistry, 51: 1, 33 44
To link to this Article: DOI: 10.1080/00958970008047076
URL: http://dx.doi.org/10.1080/00958970008047076

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND X-RAY MOLECULAR STRUCTURE ANALYSIS OF TRICOBALT CLUSTERS WITH MULTI FERROCENYL GROUPS

SATORU ONAKA*, YOSHITAKA KATSUKAWA and HITOSHI MUTO
Department of Environmental Technology, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

(Received 16 March 1999; Revised 8 June 1999; In final form 11 November 1999)

The reaction of $\mathrm{NaCo}(\mathrm{CO})_{4}$ with "impure FcPCl_{2} " in THF afforded two dark green products in low yield after column chromatography on silica-gel. Single crystal X-ray analysis showed that the products are $\mathrm{Co}_{3}(\mathrm{CO})+\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{PFc}_{2}\right)$ (1) and $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}\right)$ (2). Both clusters have a tetrahedral skeleton composed of a capping $\mu_{3}-\mathrm{PFc}$, a basal CO_{3} triangle, and an edge (the $\mathrm{Co}-\mathrm{Co}$ bond) bridging $\mu_{2}-\mathrm{P}(\mathrm{R}) \mathrm{Fc}$ group. Both clusters have 48 total skeletal electrons. The $\mathrm{Co}-\mathrm{Co}$ bond to which the $\mu_{2}-\mathrm{P}(\mathrm{R}) \mathrm{Fc}$ group bridges is significantly shorter than the other Co-Co bonds, but these are in the range of single $\mathrm{Co}-\mathrm{Co}$ bonds. CV measurements have shown that two reduction peaks are observed for 1 while a single reduction peak is observed for 2.

Keywords: Cobalt cluster; multiferrocenyl groups; X-ray structure; total skeletal electron; CV

INTRODUCTION

In a previous communication, we described the unexpected isolation of a tricobalt cluster with three ferrocenyl groups, $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{PFc}_{2}\right)$ (1) from the reaction of $\mathrm{FcPCl}_{2}\left(\mathrm{Fc}=\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)\right.$) with $\mathrm{NaCo}(\mathrm{CO})_{4}$

[^0]in THF at room temperature. ${ }^{1}$ We suggested that a small amount of impurities such as $\mathrm{Fc}_{2} \mathrm{PCl}$ contained in " FcPCl_{2} " was responsible for the formation of this cluster. If this suggestion is true, it is anticipated that other clusters should be formed during the reaction; therefore, we have explored the reaction of "impure FcPCl_{2} " with $\mathrm{NaCo}(\mathrm{CO})_{4}$ and have carried out column chromatography carefully. We have found that a new cluster $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}\right)(2)$ is obtained in addition to 1 with significant improvement of the yield of 1 when "impure FcPCl_{2} " is used. We describe the detailed synthetic procedures and results on single crystal X-ray analysis for these trinuclear clusters.

EXPERIMENTAL

Materials and General Procedures

Synthesis and manipulations were made under an argon atmosphere with standard Schlenk-line techniques. Solvents were purified by standard procedures before use. FcPCl_{2} was synthesized by literature method ${ }^{2}$ with slight modifications: (1) in situ prepared $\mathrm{Et}_{2} \mathrm{NPCl}_{2}$ was used instead of $\mathrm{Me}_{2} \mathrm{NPCl}_{2}$, (2) the refluxing time of the mixture of $\mathrm{Et}_{2} \mathrm{NPCl}_{2}$, ferrocene, and AlCl_{3} was prolonged to 20 h , and (3) the resulting " FcPCl_{2} " was extracted with dichloromethane instead of heptane to make it possible to dissolve impurities other than FcPCl_{2}. IR spectra were obtained by use of a JASCO Valor-III FT-IR spectrometer. ${ }^{31} \mathrm{P}-$ NMR spectra were recorded on a Varian XL-200 spectrometer operated at 80.984 MHz with Fourier transform mode and referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Synthesis of $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}\right)$ (2)

A THF solution (30 mL) in which " FcPCl_{2} " $(3.4 \mathrm{mmol}, 1.0 \mathrm{~g})$ was dissolved was slowly added to an ice-cooled THF solution (30 mL) of $\mathrm{NaCo}(\mathrm{CO})_{4}$ prepared from 1.36 g of $\mathrm{Co}_{2}(\mathrm{CO})_{8}(4.0 \mathrm{mmol})$ stirred over sodium amalgam. Vigorous gas evolution was observed. The mixture was stirred in an icecooled bath for several hours; then gradually warmed to room temperature for 20 h with stirring. The solvent was vacuum-stripped from the resulting red-brown solution to leave a green-brown oil. The oil was dissolved in a minimum amount of benzene and the solution was loaded on a Yamazen YFLC-700 medium-pressure liquid chromatography instrument (Wako-gel C-200). After the first huge red band and then an orange band were eluted
with hexane: benzene ($1: 4$), a dark green band was eluted with the same mixed solvent. After the solvent was distilled off, the dark green residue was subjected to a TLC (silica-gel) test which showed the existence of two green components. The dark green residue was then dissolved into a minimum amount of benzene and the solution was loaded on the same mediumpressure liquid chromatograph with a longer column (50 cm) packed with Wako-gel C-200. Two components were eluted with a mixed solvent of benzene-hexane ($1: 4$). The first dark green product was recrystallized from hexane to afford 2 and 1 was obtained from the second green band. The yield of the crude product is approximately 60 mg for 1 and approximately 30 mg for 2, respectively. IR ($\nu(\mathrm{CO})$)/(KBr-disk): 2046(s), 1996(vs), 1982(s), 1969(s), 1952(s) cm^{-1} for 1 and 2055(m), 2050(m, sh), 1993(s), 1969(vs), $1941(\mathrm{~s}) \mathrm{cm}^{-1}$ for $2 .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 57.8(\mathrm{~s})$ and $68.8(\mathrm{~s})$ for 1 and δ $55.9(\mathrm{~d})\left(J_{\mathrm{P}-\mathrm{H}}=380 \mathrm{~Hz}\right)$ and $71.2(\mathrm{~s})$ for 2. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.15-4.29$ $(\mathrm{m}, 18 \mathrm{H})$ for 1 and $4.69(\mathrm{~d})\left(J_{\mathrm{P}-\mathrm{H}}=380 \mathrm{~Hz}\right)$ and $4.49-4.74(\mathrm{~m}, 18 \mathrm{H})$ for 2.

Single crystals have not yet been obtained from the first main red band. This hampers the exact characterization of the main product.

X-ray Data Collection and Structure Determination

A dark green crystal of 1 with approximate dimensions of $0.55 \times 0.45 \times$ $0.20 \mathrm{~mm}^{3}$ grown from hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was mounted on a MAC MXC ${ }^{3}$ diffractometer equipped with graphite monochromated MoK_{α} radiation $(\lambda=0.71073 \AA)$. A dark green crystal of 2 (approximate dimensions of $0.40 \times 0.35 \times 0.10 \mathrm{~mm}^{3}$) grown from hexane was mounted on the same diffractometer. Reflection data for both crystals were collected at room temperature (298 K). The crystal data for these compounds are given in Table I. The structure of 1 was solved by direct methods (SHELXS 86) and that of 2 was solved by MULTAN 78. Both structures were refined by a full-matrix least-squares method with a Crystan program package provided by MAC Science. Refinements were made anisotropically for nonhydrogen atoms for both compounds. The positions of the hydrogen atoms of the Cp rings in 1 were determined from the difference Fourier map and refined isotropically. Attempts were made to locate the positions of the H atoms of the Cp rings of 2 from the difference Fourier map; however, it was impossible to locate all the hydrogen atoms from the Fourier map. In addition, the function to locate the hydrogen atom at the calculated position is not included in the Crystan program package. The position of the H atom in the $\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}$ group of 2 is successfully determined from the difference Fourier map and refined isotropically. The molecular structures of 1 and 2 are displayed

TABLE I Crystal data

Compound	$\begin{equation*} \mathrm{Co}_{3}(C O)_{7}\left(\mu_{3}-P F c\right)\left(\mu_{2}-P F c_{2}\right) \tag{1} \end{equation*}$	$\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-P F c\right)\left(\mu_{2}-P(H) F c\right)$ (2)
Formula	$\mathrm{C}_{37} \mathrm{H}_{27} \mathrm{CO}_{3} \mathrm{Fe}_{3} \mathrm{O}_{7} \mathrm{P}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{Co}_{3} \mathrm{Fe}_{2} \mathrm{O}_{7} \mathrm{P}_{2}$
Formula weight	989.9	805.8
Crystal system	Monoclinic	Monoclinic
Space group	$\mathrm{P}_{21} / \boldsymbol{n}$	P2/ $/$ c
\boldsymbol{a} (${ }_{\text {A }}$)	16.043(4)	16.984(5)
b (${ }_{\text {A }}$)	18.174(3)	12.142(4)
$c(A)$	12.562(2)	14.452(4)
β (deg)	91.45(2)	103.02(2)
$V\left(\dot{A}^{3}\right)$	3661(1)	2904(2)
\boldsymbol{Z}	4	4
$d_{\text {calod }} / \mathrm{g} \mathrm{cm}^{-3}$	1.80	1.84
Crystal dimensions (mm^{3})	$0.55 \times 0.45 \times 0.20$	$0.40 \times 0.35 \times 0.10$
$\mu\left(\mathrm{MoK}_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	15.0	15.7
Scan type	ω	ω
Scan range	$1.35+0.35 \tan \theta$	$1.60+0.35 \tan \theta$
Scan speed/deg min^{-1}	5.0	5.0
$2 \theta_{\text {max }}$ (deg)	50.0	55.0
Temperature (K)	298	298
Unique reflections	6441	5916
Reflections with $\left\|F_{0}\right\|>3 \sigma\left(\left\|F_{0}\right\|\right)$	4387	4552
No. of parameters refined	556	382
R	0.055	0.060
$\boldsymbol{R}_{\text {w }}$	0.075	0.072

MoK_{α} radiation $(\lambda=0.71073 \AA) ; \quad R=\sum| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| /\left|F_{\mathrm{o}}\right| ; \quad R_{w}=\left[\Sigma\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum_{m}\left(F_{\mathrm{o}}\right)^{2}\right]^{1 / 2}$ where $w=$ $1 / \sigma^{2}(F) \cdot{ }^{\mathbf{a}}\left|F_{0}\right|>4 \sigma\left(\left|F_{0}\right|\right)$.

FIGURE 1 The molecular structure of $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{PFc}_{2}\right)$ (1) together with numbering scheme.

FIGURE 2 The molecular structure of $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}\right)$ (2) together with numbering scheme.
in Figures 1 and 2. The atomic coordinates are listed in Tables II and III and selected bond lengths and angles are given in Table IV. The $\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|$ tables and anisotropic temperature factor tables are available from S.O.

Electrochemical Measurements

Cyclic voltammetry was done at $25^{\circ} \mathrm{C}$ with a BAS CV-50W electrochemical analyzer equipped with a platinum electrode for the working electrode and a platinum coil for the auxiliary electrode. $\mathrm{A} \mathrm{Ag} / \mathrm{AgNO}_{3}(0.01 \mathrm{M})$ electrode was employed as the reference electrode with $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ (TBAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Approximately a $10^{-3} \mathrm{M}$ solution was prepared in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which contained 0.1 M TBAP as a supporting electrolyte. A sweep rate of $200 \mathrm{mV} / \mathrm{s}$ was generally used for CV. All of the manipulations were carried out under an argon atmosphere. The electrochemical data are tabulated in Table V and a typical cyclic voltammograph is shown in Figure 3.

TABLE II Atomic coordinates and isotropic thermal parameter, $B_{\text {eq }}\left(\dot{\mathrm{A}}^{2}\right)$ of 1

Atom	x	\boldsymbol{y}	z	$B(e q)$
Col	0.26756 (7)	0.21998 (6)	0.05296 (8)	2.88 (4)
Co2	0.10974 (7)	0.21936 (6)	0.01562 (8)	2.81 (4)
Co3	0.21292 (8)	0.19350 (7)	-0.14351 (9)	3.54 (4)
Fel	0.11867 (8)	0.44520 (8)	-0.1708 (1)	3.87 (4)
Fe 2	0.22870 (8)	0.32322 (8)	0.3851 (1)	3.81 (4)
Fe 3	0.05714 (8)	0.07638 (7)	0.3013 (1)	3.55 (4)
P1	0.1974 (1)	0.2917 (1)	-0.0527 (2)	2.93 (6)
P2	0.1711 (1)	0.2104 (1)	0.1727 (2)	2.70 (6)
C1	0.3210 (5)	0.1341 (6)	0.0762 (8)	4.1 (3)
C2	0.3451 (6)	0.2831 (6)	0.0875 (7)	4.1 (3)
C3	0.0294 (6)	0.2840 (5)	0.0336 (7)	3.7 (2)
C4	0.0569 (6)	0.1345 (6)	-0.0035 (8)	4.0 (3)
C5	0.3136 (8)	0.2015 (6)	-0.2006 (9)	5.5 (3)
C6	0.2095 (6)	0.0969 (6)	-0.1084 (8)	4.4 (3)
C7	0.1425 (8)	0.2012 (7)	-0.253 (1)	6.0 (4)
01	0.3564 (5)	0.0816 (6)	0.0884 (4)	7.3 (3)
02	0.3966 (5)	0.3249 (5)	0.1102 (6)	6.4 (2)
03	-0.0209 (4)	0.3259 (4)	0.0494 (6)	5.7 (2)
04	0.0216 (4)	0.0819 (4)	-0.0233 (6)	5.6 (2)
05	0.3779 (6)	0.2027 (6)	-0.2355 (9)	9.0 (4)
06	0.2111 (6)	0.0365 (4)	-0.0901 (7)	6.5 (3)
07	0.0969 (7)	0.2044 (6)	-0.3251 (8)	10.3 (4)
C11	0.1993 (5)	0.3890 (5)	-0.0725 (6)	3.0 (2)
C12	0.1546 (6)	0.4437 (5)	-0.0144 (7)	3.7 (2)
C13	0.1725 (6)	0.5134 (6)	-0.0611 (9)	4.8 (3)
C14	0.2269 (6)	0.5028 (6)	-0.1425 (9)	4.4 (3)
C15	0.2436 (5)	0.4261 (5)	-0.1535 (7)	3.8 (2)
C16	0.0717 (9)	0.397 (1)	-0.308 (1)	7.1 (5)
C17	0.0236 (7)	0.3782 (9)	-0.227 (1)	5.9 (4)
C18	-0.0087 (8)	0.443 (1)	-0.180 (1)	7.7 (5)
C19	0.0214 (9)	0.5039 (9)	-0.234 (1)	7.6 (5)
C20	0.0727 (9)	0.476 (1)	-0.318 (1)	7.8 (5)
C21	0.1550 (5)	0.2865 (5)	0.2604 (6)	3.3 (2)
C22	0.1076 (6)	0.2929 (6)	0.3552 (7)	3.8 (2)
C23	0.1117 (7)	0.3689 (6)	0.3873 (9)	5.4 (3)
C24	0.1610 (7)	0.4078 (6)	0.3152 (9)	4.7 (3)
C25	0.1887 (6)	0.3578 (5)	0.2380 (6)	3.6 (2)
C26	0.3558 (6)	0.3174 (8)	0.386 (1)	5.6 (4)
C27	0.3296 (8)	0.3713 (7)	0.458 (1)	5.7 (4)
C28	0.2815 (9)	0.335 (1)	0.5339 (9)	6.5 (4)
C29	0.2773 (8)	0.2589 (9)	0.507 (1)	6.9 (4)
C30	0.3233 (7)	0.2474 (7)	0.414 (1)	5.4 (3)
C31	0.1616 (5)	0.1285 (5)	0.2516 (7)	3.3 (2)
C32	0.1554 (6)	0.0571 (5)	0.2041 (8)	4.1 (3)
C33	0.1553 (7)	0.0032 (7)	0.289 (1)	5.5 (4)
C34	0.1608 (6)	0.0417 (7)	0.385 (1)	5.7 (4)
C35	0.1654 (7)	0.1192 (6)	0.3655 (8)	4.6 (3)
C36	-0.0482 (6)	0.1264 (7)	0.2413 (9)	4.9 (3)
C37	-0.0504 (6)	0.0518 (7)	0.217 (1)	5.5 (3)
C38	-0.0461 (7)	0.0129 (6)	0.316 (1)	6.1 (4)
C39	-0.0428 (6)	0.0644 (6)	0.3986 (9)	5.1 (3)
C40	-0.0440 (6)	0.1330 (6)	0.3520 (8)	4.3 (3)
H12	0.108 (7)	0.441 (6)	0.036 (8)	3.69 (0)

TABLE II (Continued)

Atom	x	y		
H13	$0.160(7)$	$0.560(7)$	$-0.030(9)$	$4.84(0)$
H14	$0.248(7)$	$0.529(6)$	$-0.207(9)$	$4.38(0)$
H15	$0.270(7)$	$0.390(6)$	$-0.218(9)$	$3.76(0)$
H16	$0.089(9)$	$0.374(9)$	$-0.36(1)$	$7.11(0)$
H17	$0.020(8)$	$0.327(8)$	$-0.20(1)$	$5.92(0)$
H18	$-0.04(1)$	$0.44(1)$	$-0.13(1)$	$7.71(0)$
H19	$0.01(1)$	$0.554(9)$	$-0.24(1)$	$7.66(0)$
H20	$0.087(9)$	$0.505(8)$	$-0.38(1)$	$7.81(0)$
H22	$0.071(7)$	$0.255(6)$	$0.380(8)$	$3.79(0)$
H23	$0.088(8)$	$0.392(7)$	$0.45(1)$	$5.38(0)$
H24	$0.175(7)$	$0.458(7)$	$0.32(1)$	$4.73(0)$
H25	$0.228(6)$	$0.370(6)$	$0.167(8)$	$3.59(0)$
H26	$0.389(8)$	$0.317(7)$	$0.31(1)$	$5.58(0)$
H27	$0.337(8)$	$0.423(8)$	$0.45(1)$	$5.75(0)$
H28	$0.26(1)$	$0.348(9)$	$0.58(1)$	$6.48(0)$
H29	$0.243(9)$	$0.216(8)$	$0.55(1)$	$6.90(0)$
H30	$0.345(8)$	$0.193(7)$	$0.36(1)$	$5.45(0)$
H32	$0.136(7)$	$0.039(6)$	$0.122(9)$	$4.08(0)$
H33	$0.153(8)$	$-0.056(8)$	$0.27(1)$	$5.52(0)$
H34	$0.172(7)$	$0.015(7)$	$0.47(1)$	$5.73(0)$
H35	$0.167(8)$	$0.150(7)$	$0.41(1)$	$4.57(0)$
H36	$-0.046(8)$	$0.162(7)$	$0.20(1)$	$4.89(0)$
H37	$-0.041(7)$	$0.012(7)$	$0.15(1)$	$5.50(0)$
H38	$-0.047(8)$	$-0.060(7)$	$0.32(1)$	$6.05(0)$
H39	$-0.039(8)$	$0.056(7)$	$5.12(0)$	
H40	$-0.042(7)$	$0.190(6)$	$0.47(1)$	$4.28(0)$

TABLE III Atomic coordinates and isotropic thermal parameter, $B_{\text {eq }}\left(\dot{\AA}^{2}\right)$ of 2

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{B}(\mathrm{eq})$
Co1	$0.22512(5)$	$0.11229(7)$	$0.23369(6)$	$3.09(2)$
Co2	$0.21011(5)$	$0.11034(7)$	$0.40264(6)$	$3.05(3)$
Co3	$0.21636(6)$	$0.30636(7)$	$0.32080(7)$	$3.47(2)$
Fe1	$0.50422(6)$	$0.22783(9)$	$0.34533(6)$	$3.55(3)$
Fe2	$0.14726(6)$	$-0.24975(8)$	$0.39974(6)$	$3.28(3)$
P1	$0.3074(1)$	$0.1850(1)$	$0.3516(1)$	$3.04(4)$
P2	$0.2356(1)$	$-0.0326(1)$	$0.3242(1)$	$3.02(4)$
C1	$0.1228(5)$	$0.0840(6)$	$0.1660(5)$	$3.6(2)$
C2	$0.2834(5)$	$0.0987(6)$	$0.1481(5)$	$4.0(2)$
C3	$0.1044(4)$	$0.0902(6)$	$0.4043(5)$	$3.5(2)$
C4	$0.2599(4)$	$0.0912(6)$	$0.5219(5)$	$3.9(2)$
C5	$0.2786(6)$	$0.4244(7)$	$0.3401(7)$	$5.6(3)$
C6	$0.1522(5)$	$0.3247(7)$	$0.2048(6)$	$4.9(2)$
C7	$0.1486(6)$	$0.3241(6)$	$0.3980(6)$	$5.1(2)$
O1	$0.0604(3)$	$0.0612(5)$	$0.1270(4)$	$5.3(2)$
O2	$0.3218(4)$	$0.0875(5)$	$0.0937(4)$	$6.4(2)$
O3	$0.0394(3)$	$0.0774(5)$	$0.4090(4)$	$5.7(2)$
O4	$0.2922(4)$	$0.0721(6)$	$0.5978(4)$	$6.2(2)$
O5	$0.3199(4)$	$0.4994(5)$	$0.3526(6)$	$8.4(3)$
O6	$0.1109(4)$	$0.3495(6)$	$0.1351(4)$	$6.9(2)$
O7	$0.1050(5)$	$0.3482(5)$	$0.4436(5)$	$8.4(3)$

TABLE III (Continued)

Atom	\boldsymbol{y}	\boldsymbol{y}	\boldsymbol{z}	$B(\mathrm{eq})$
C11	$0.4128(4)$	$0.1707(5)$	$0.4011(4)$	$3.1(2)$
C12	$0.4626(5)$	$0.0803(6)$	$0.3849(6)$	$4.9(2)$
C13	$0.5418(5)$	$0.1024(8)$	$0.4400(7)$	$5.9(3)$
C14	$0.5405(5)$	$0.203(1)$	$0.4882(6)$	$5.9(3)$
C15	$0.4604(5)$	$0.2490(8)$	$0.4652(5)$	$5.3(2)$
C16	$0.4608(7)$	$0.285(1)$	$0.2115(7)$	$6.6(3)$
C17	$0.518(1)$	$0.206(1)$	$0.2098(7)$	$9.9(5)$
C18	$0.5880(8)$	$0.246(2)$	$0.270(1)$	$14.1(9)$
C19	$0.579(2)$	$0.341(2)$	$0.309(1)$	$13.7(9)$
C20	$0.491(1)$	$0.370(1)$	$0.271(1)$	$9.8(6)$
C21	$0.1731(4)$	$-0.1515(5)$	$0.2966(4)$	$3.3(2)$
C22	$0.0865(4)$	$-0.1547(6)$	$0.2876(5)$	$3.8(2)$
C23	$0.0623(5)$	$-0.2684(7)$	$0.2732(5)$	$4.4(2)$
C24	$0.1325(6)$	$-0.3331(7)$	$0.2726(5)$	$5.0(2)$
C25	$0.2026(5)$	$-0.2626(6)$	$0.2892(5)$	$4.2(2)$
C26	$0.1387(6)$	$-0.1796(8)$	$0.5268(5)$	$5.2(3)$
C27	$0.0891(6)$	$-0.273(1)$	$0.5074(6)$	$6.6(3)$
C28	$0.1372(9)$	$-0.3659(8)$	$0.4989(6)$	$7.0(4)$
C29	$0.2185(7)$	$-0.3289(9)$	$0.5123(6)$	$6.7(3)$
C30	$0.2180(6)$	$-0.2147(9)$	$0.5301(5)$	$5.5(3)$
H1	$0.314(6)$	$-0.071(7)$	$0.353(6)$	$5.32(0)$

TABLE IV Selected bond lengths (\dot{A}) and angles (deg)

Compound	$\begin{gathered} \mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-P F c_{2}\right) \\ (1) \end{gathered}$	$\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}\right)$ (2)
Distance		
$\mathrm{Co} 1-\mathrm{Co} 2$	2.564 (1)	2.511 (1)
$\mathrm{Col}-\mathrm{Co} 3$	2.642 (1)	2.691 (1)
$\mathrm{Co} 2-\mathrm{Co} 3$	2.670 (2)	2.670 (1)
P1-Col	2.156 (2)	2.136 (2)
P1-C02	2.123 (2)	2.155 (2)
P1-Co3	2.136 (2)	2.109 (2)
P2-Col	2.193 (2)	2.175 (2)
P2-C02	2.188 (2)	2.169 (2)
P1-C11	1.785 (8)	1.781 (6)
P2-C21	1.792 (8)	1.783 (7)
P2-C31	1.798 (8)	
$\mathrm{Col}-\mathrm{Cl}$	1.797 (9)	1.824 (7)
Col-C2	1.747 (9)	1.756 (8)
C02-C3	1.764 (9)	1.818 (8)
Co2-C4	1.774 (9)	1.755 (7)
Co3-C5	1.79 (1)	1.764 (9)
C03-C6	1.81 (1)	1.796 (8)
C03-C7	1.77 (1)	1.79 (1)
$\mathrm{Cl}-\mathrm{O} 1$	1.12 (1)	1.117 (9)
$\mathrm{C} 2-\mathrm{O} 2$	1.15 (1)	1.14 (1)
C3-03	1.13 (1)	1.132 (9)
C4-04	1.14 (1)	1.135 (9)

TABLE IV (Continued)

Compound	$\underset{(1)}{C o_{3}(C O)_{7}\left(\mu_{3}-P F c\right)\left(\mu_{2} P F c_{2}\right)}$	$\underset{\text { (2) }}{\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-P(H) F c\right)}$
C5-05	1.13 (1)	1.14 (1)
C6-06	1.12 (1)	1.13 (1)
C7-07	1.14 (2)	1.13 (1)
P2-H1		1.39 (9)
Angle		
Col-Co2-Co3	60.60 (4)	62.49 (4)
C02-C03-C01	67.72 (4)	55.86 (3)
C03-C01-C02	61.68 (4)	61.65 (4)
P1-Col-Co2	52.61 (6)	54.53 (6)
P1-Col-Co3	51.68 (6)	50.21 (5)
P1-Co2-Col	53.78 (6)	53.84 (5)
P1-Co2-Co3	51.40 (6)	50.46 (5)
Pl-Co3-Col	52.34 (6)	51.11 (5)
P1-C03-C02	50.97 (6)	52.00 (6)
P1-Co1-P2	95.93 (8)	84.52 (7)
P1-Co2-P2	97.04 (8)	84.22 (7)
Col-Co2-P2	54.26 (6)	54.79 (5)
Co2-Col-P2	54.08 (6)	54.58 (5)
C03-C02-P2	112.87 (6)	116.68 (6)
Col-P1-C02	73.61 (7)	71.63 (6)
Col-P1-C03	75.98 (8)	78.68 (6)
Co2-P1-Co3	77.62 (8)	77.54 (7)
Col-P2-Co2	71.65 (7)	70.62 (6)
P1-Col-Cl	149.6 (3)	151.4 (2)
P1-Col-C2	96.5 (3)	103.3 (2)
P1-Co2-C3	143.5 (3)	153.7 (2)
Pl-C02-C4	97.6 (3)	98.9 (3)
P1-C03-C5	105.3 (4)	98.6 (3)
P1-C03-C6	132.4 (3)	123.0 (3)
P1-C03-C7	105.6 (4)	119.8 (2)
P2-Col-C1	99.3 (3)	96.2 (2)
P2-Col-C2	113.2 (3)	111.4 (2)
P2-C02-C3	104.3 (3)	102.3 (2)
P2-C02-C4	105.1 (3)	153.7 (2)
C1-Co1-C2	101.3 (4)	103.0 (3)
C3-C02-C4	104.4 (4)	103.2 (3)
C5-C03-C6	102.1 (5)	105.2 (4)
C5-C03-C7	104.3 (5)	104.5 (4)
C6-C03-C7	104.1 (5)	103.2 (4)

TABLE V Voltammetric data

Compound	Oxidation	Reduction
	$E_{1 / 2}$	$E_{1 / 2}$
$\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{PFc}\right)(1)$	0.33	$-1.15,-1.34$
$\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}\right)(2)$	0.48	-1.07

${ }^{-} E_{1 / 2}=$ half-wave potential (V).

FIGURE 3 Cyclic voltammograms of $\mathrm{Co}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{PFc}_{2}\right)$ (1) (top) and $\mathrm{CO}_{3}(\mathrm{CO})_{7}\left(\mu_{3}-\mathrm{PFc}\right)\left(\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}\right)(2)$ (bottom) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the negative potential region at $25^{\circ} \mathrm{C}$.

RESULTS AND DISCUSSION

We have attempted to improve the yield of 1 by employing high-purity $\mathrm{AlCl}_{3}(99.9 \%)$ instead of standard-grade $\mathrm{AlCl}_{3}(96 \%)$ in the procedure of the synthesis of $\mathrm{FcPCl}_{2}{ }^{2}$ However, repeated trials have shown that neither 1 nor 2 were prepared when high-purity AlCl_{3} was employed. The reason why 1 and/or 2 is not obtained when high-purity AlCl_{3} is used for the synthesis of $\mathrm{Fc}_{2} \mathrm{PCl}$ is not clear at present.

The molecular structures of both compounds have been successfully solved and refined as described in the Experimental section. The position of
the H atom in the bridging $\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}$ group of 2 has been determined from the difference Fourier map. Additional evidence for the existence of the H atom in this bridging group has been provided from ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$-NMR spectra as described in the Experimental section. The total skeletal electrons are 48 for both clusters. Sharp NMR signals (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$) and these electron counts suggest that both clusters are diamagnetic. The molecular structures of 1 and 2 are quite similar (Figures land 2) with an apical μ_{3}-bridging PFc group and a μ_{2}-bridging $P(R) F c$ group. In 2 however, the bridging μ_{2-} $\mathrm{P}(\mathrm{H}) \mathrm{Fc}$ group is significantly pulled-up toward the apical $\mu_{3}-\mathrm{PFc}$ group and the CO group in an equatorial position on the Co 3 atom is lessened from two (cluster 1) to one. This subtle change in the structure is confirmed by comparing the $\mathrm{P} 1-\mathrm{Co} 1-\mathrm{P} 2$ and $\mathrm{P} 1-\mathrm{Co} 2-\mathrm{P} 2$ bond angles for both clusters; P1-Co1-P2 and P2-C02-P2 angles for 1 are 95.93(8) and 97.04(8) ${ }^{\circ}$, respectively while $\mathrm{P} 1-\mathrm{Co1}-\mathrm{P} 2$ and $\mathrm{P} 1-\mathrm{C} 02-\mathrm{P} 2$ angles for 2 are $84.52(7)^{\circ}$ and $84.22(7)^{\circ}$, respectively. The comparison of bond-lengths and angles for 1 and 2 from Table IV indicates that the distances between CO 1 and Co 2 , which the $\mu_{2}-\mathrm{P}(\mathrm{R}) \mathrm{Fc}(\mathrm{R}=\mathrm{H}$ or Fc$)$ bridges, are significantly shorter than the distances between Co 1 and Co 3 and between Co 2 and Co 3 for both clusters. This shortening is enhanced in 2; $r(\mathrm{Col}-\mathrm{Co} 2)=2.511(1) \dot{A}$ is $0.16 \AA$ shorter than $r(\mathrm{Co} 1-\mathrm{Co} 3)=2.691(1) \dot{A}$ and $r(\mathrm{Co} 2-\mathrm{Co} 3)=2.670(1) \dot{A}$, while $r(\mathrm{Col}-\mathrm{Co} 2)=2.564(1) \AA$ is $0.08 \AA$ shorter than $r(\mathrm{Col}-\mathrm{Co} 3)=$ $2.642(1) \dot{A}$ and $r(\mathrm{Co} 2-\mathrm{Co} 3)=2.670(2) \dot{A}$ in 1. Although these shortenings are significant for 1 and 2, the distances are typical for a single $\mathrm{Co}-\mathrm{Co}$ bond $\left(2.52 \AA\right.$ for $\mathrm{Co}_{2}(\mathrm{CO})_{8}, 2.49 \AA$ for $\mathrm{Co}_{4}(\mathrm{CO})_{12}, 2.47 \AA$ for $\mathrm{CH}_{3} \mathrm{CCO}_{3}(\mathrm{CO})_{9}$, and $2.47 \dot{\AA}$ for $\left.\mathrm{Cp}_{4} \mathrm{Co}_{4} \mathrm{H}_{4}\right)^{3}$ and considerably longer than those of double $\mathrm{Co}=\mathrm{Co}$ bonds ($2.253 \dot{\AA}$ for $\mathrm{Cp}_{2}^{*} \mathrm{Co}_{2}$ and 2.372(2) and 2.359(2) $\dot{\mathrm{A}}$ for $[\mathrm{CpCo}(\mathrm{CO})]_{2}^{--}{ }^{4,5} \mathrm{Thus}$ it is anticipated that the bridging $\mu_{2}-\mathrm{P}(\mathrm{R}) \mathrm{Fc}$ group is responsible for the shortening of the $\mathrm{Col}-\mathrm{Co} 2$ bond lengths for both clusters. Next we are interested in the enhanced shortening of this bond in 2 and compare the $\mathrm{P} 2-\mathrm{Co} 1$ and $\mathrm{P} 2-\mathrm{Co} 2$ bond lengths for both clusters; the $\mathrm{P} 2-\mathrm{Co} 1$ and $\mathrm{P} 2-\mathrm{Co} 2$ bond lengths in 2 are approximately $0.02 \dot{\mathrm{~A}}$ shorter than those in 1. The comparison of the skeletal Cok-Col-Com (k, $1, \mathrm{~m}=1$ or 2 or 3) angles affords another hint to interpret the result; $\mathrm{Co} 2-\mathrm{Co} 3-\mathrm{Co} 1$ for 2 is $55.86(3)^{\circ}$ and is the smallest in three Cok-Col-Com angles while this angle for 1 is $67.72(4)^{\circ}$ and is the largest in three Cok-Col-Com angles. The $\mathrm{P}(\mathrm{H}) \mathrm{Fc}$ group is less bulky than the PFc_{2} group. Therefore, it is considered that the less bulky $\mathrm{P}(\mathrm{H}) \mathrm{Fc}$ group in 2 can approach closer to Co 1 and Co 2 than PFc_{2} does in 1 and less bulkiness of the bridging $\mu_{2}-\mathrm{P}(\mathrm{H}) \mathrm{Fc}$ group is mainly responsible for this shortening of the $\mathrm{Co} 1-\mathrm{Co} 2$ bond length in 2.

The most interesting characteristic for 1 and 2 is that both clusters have multiple ferrocenyl groups which are redox-active and therefore exploration of the redox chemistry by CV for both clusters is attractive. In the previous communication, we reported that only one peak assignable to the oxidation of the ferrocenyl groups is observed in the positive potential region for 1 at room temperature. This observation suggests that the oxidation potentials for ferrocenyl groups which are in different circumstances are similar and the three ferrocenyl groups do not interact electronically with each other. Although two ferrocenyl groups in 2 are under different surroundings than 1 , the cyclic voltammogram is similar to that of 1 in the positive potential region at room temperature. The cyclic voltammogram of 2 in the negative potential region, however, is different from that of 1 as shown in Figure 3; two reduction peaks are observed for 1 while only one reduction peak is observed for 2 at room temperature. These peaks are assigned to the reduction of the Co_{3} core. ${ }^{6,7}$ The CO_{3} core reduction takes place at one step for 2. One plausible explanation for the occurrence of two reduction peaks in 1 is that the first reduction step occurs at Co 1 and Co 2 to which the PFc_{2} group bridges and the second reduction occurs at Co3. In order to confirm this assignment, the measurement of the exact current at each reduction step is needed. However, it has been shown that the anion is unstable either for 1 or 2 at room temperature. Repeated potential sweeps in the negative potential region for both clusters diminish the peak intensity rapidly. This instability has hampered further exploration.

Acknowledgements

The present research was financially supported by Tokai Foundation for Technology and Iketani Science and Technology Foundation.

References

[1] S. Onaka, H. Muto, Y. Katsukawa and S. Takagi, J. Organomet. Chem., 543, 241 (1997).
[2] G.P. Sollott and W.R. Peterson Jr., J. Organomet. Chem., 19, 143 (1969).
[3] H. Lorenz, Chem. Ber., 108, 973 (1976).
[4] N.E. Schore, C.S. Menda and R.G. Bergman, J. Am. Chem. Soc., 99, 1781 (1977).
[5] J.J Schneider, R. Goddard, S. Werner and C. Krüger, Angew. Chem. Int. Ed. Engl., 30, 1124 (1991).
[6] S. Onaka, M. Otsuka, S. Takagi and K. Sako, J. Coord. Chem., 37, 151 (1996); S. Onaka. Y. Katsukawa and H. Furuta, J. Coord. Chem., 42, 77 (1997).
[7] S.B. Colbran, B.H. Robinson and J. Simpson, Organometallics, 2, 943 (1983); 2, 952 (1983); 3, 1344 (1984).

[^0]: - Corresponding author. E-mail: onklustr@ks.kyy.nitech.ac.jp.

